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Direct numerical simulations of the velocity and temperature fields for turbulent flow
in a channel are used to examine the influence of Prandtl number Pr on turbulent
transport. The Reynolds number, based on the half-height of the channel and the
friction velocity, is Reτ = 150. Prandtl numbers of 1.0, 0.3, 0.1, 0.05, 0.025 were
studied. The bottom and the top walls were kept at constant temperatures of +Tw
and −Tw . The influence of Pr on Reynolds transport, on the turbulent diffusivity, αt,
and on the spectral density function of the temperature fluctuations was studied. The
observation that spatial variations of the ratio of the turbulent diffusivity to the value
observed at Pr = 1.0 are not large is used to propose a method for calculating average
temperature fields. The decrease in αt with decreasing Pr is related to observations
of the increased damping of high-wavenumber temperature fluctuations. Molecular
conductivity, at smaller Pr , is pictured to act as a filter that renders high-frequency
velocity fluctuations ineffective in transporting heat.

1. Introduction
The transport of heat in turbulent fields at small Prandtl numbers is affected

by the turbulence in two ways. First, molecular diffusivity plays a more important
direct role because it can be of the same order as the turbulent diffusivity. Secondly,
molecular motion causes thermal tags to escape from eddies and therefore decreases
the effectiveness of the turbulence in mixing. Laboratory studies of the turbulence are
very difficult because fluids with large molecular conductivities, such as mercury or
liquid sodium, are difficult to handle. This paper reports on a study in which direct
numerical simulations (DNS) of turbulent velocity and temperature fields are used.
The goals are to define the effect of Prandtl number on statistical properties of the
temperature field and on profiles of eddy conductivity, αt.

The system considered is the fully developed temperature field that would be
realized for turbulent flow in a rectangular channel with bottom and top walls
maintained at constant temperatures, +Tw and −Tw . This provides a simple case
since the heat flux is constant across the channel. The Reynolds number is Reτ =
Huτ/ν = 150, where uτ is the friction velocity, H is the half-height of the channel, and
ν is the kinematic viscosity. Temperature fields characterized by Prandtl numbers Pr
of 0.025, 0.05, 0.1, 0.3 and 1.0 were studied.

Several DNS studies have been undertaken in other laboratories, in which both
walls of the channel were kept at the same mean temperature. Kim & Moin (1989)
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carried out a DNS for Pr = 0.1, 0.71, and 2.0 at Reτ = 180. They assumed generation
of heat within the fluid and removal of heat at both walls. Calculated profiles of
turbulent diffusivity were approximately the same for Pr = 0.71, 2.0. However, a
significant decrease was found when the Prandtl number decreased from 0.71 to 0.1.
Wavenumber spectra were not presented and no attempt was made to develop a
correlation for αt.

Kasagi & Ohtsubo (1993) used a constant heat flux at both walls but allowed the
temperature to vary with time and position. Prandtl numbers of 0.71 and 0.025 were
studied at Reτ = 150. They found a decrease in ατ with decreasing Pr but did not
provide a correlation. Their spectral density functions of the temperature fluctuations
were plotted in such a way that the definition of the beginning of an inertial–diffusive
subrange was not clearly shown. However, they did report that the drop in the spectral
density function at large wavenumbers was steeper for Pr = 0.025.

Kawamura et al. (1998) carried out a DNS of temperature fields at Reτ = 180 for
Pr = 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 1.0, 1.5, 5.0. A constant heat flux was maintained at
both walls. They found that the values of αt for Pr = 0.6, 0.71, 5.0 were approximately
the same. However, for Pr < 0.6 decreases in αt with decreasing Pr were observed.
Wavenumber spectra were not presented.

Theoretical studies have focused mainly on homogeneous isotropic turbulence.
Saffman (1960, 1963) and Kontomaris & Hanratty (1993) considered dispersion from
a point source and showed how molecular diffusivity decreases the contribution of
turbulence. Kontomaris & Hanratty (1994) have presented results from a DNS study
which examined the effect of Prandtl number on turbulent dispersion from a point
source at the centre of a channel through which a fluid was flowing. Several investi-
gators have examined the effect of Pr on the wavenumber spectrum of the temperature
fluctuations in homogeneous, isotropic turbulence (Batchelor 1959; Batchelor, Howells
& Townsend 1959; Tennekes & Lumley 1972; Hinze 1975).

A comprehensive experimental study of temperature spectra has been carried out
by Clay (1973), over a range of Prandtl numbers of 0.02 to 7, in order to test the
theoretical results cited above, as well as scaling arguments presented by Gibson
(1968a, b).

The main theoretical contribution of this paper is the use of spectral density
functions of the fluctuating temperature to provide an interpretation of the observed
influence of Prandtl number on the eddy diffusivity and on statistical properties of
the fluctuating temperature field. The observation that the ratio of the turbulent
diffusivity at a given Prandtl number to the turbulent diffusivity at a Prandtl number
of unity is roughly constant over the whole cross-section of the channel, with the
exception of y+ < 10, could be useful in making practical calculations.

The work described in this paper is related to a previous study by Na, Papavassiliou
& Hanratty (1999) in which the spectral density functions of the scalar field were
used to interpret results obtained from DNS studies at Pr > 1.

2. Theoretical background
2.1. Mean temperature profile

The instantaneous temperature can be defined as the sum of the mean and fluctuating
components, T = T̄ + ϑ. The contribution of turbulence to the transport of heat is
defined as ρcpvϑ where v is the fluctuating velocity component normal to the wall. A
fully developed flow is considered. The two walls are kept at constant temperatures
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of +Tw and −Tw , so the time-averaged heat flux across the channel is independent
of location. Therefore,

vϑ− αdT̄

dy
=

q

ρcp
=

qw

ρcp
, (2.1)

where q is the local heat flux, qw is the heat flux at the wall, ρ is the fluid density, cp is
the specific heat capacity, y is the coordinate perpendicular to the wall and α = k/ρcp
is the molecular diffusivity.

A turbulent diffusivity, αt, can be defined as

vϑ = −αtdT̄
dy

(2.2)

so that (2.1) can be written as

−(α+ αt)
dT̄

dy
=

q

ρcp
=

qw

ρcp
. (2.3)

The integration of (2.3) yields

T̄w − T̄ =

∫ y

−H
qw

ρcp(α+ αt)
dy (2.4a)

and
hcH

k
=

1∫ 0

−1

(1 + (αt/α))−1 d(y/H)

, (2.4b)

where hc is a heat-transfer coefficient, defined using T̄w− T̄c, where T̄c is the centreline
mean temperature. For αt = 0, equation (2.4b) gives hcH/k = 1.

Equation (2.1) can be made dimensionless by using the friction velocity, uτ, a
characteristic length ν/uτ, and a friction temperature T ∗ = qw/ρcpuτ, giving

v+ϑ+ − 1

Pr

dT̄+

dy+
= 1. (2.5a)

A second way is to use Tw , uτ and H as normalizing factors:

v+ϑ− 1

Peτ

dT̄

d(y/H)
=

hc

uτρcp
. (2.5b)

The Reynolds transport terms in (2.5a) and (2.5b) are modelled as

v+ϑ+ = −αt
ν

dT̄+

dy+
, v+ϑ = − αt

Huτ

dT̄

d(y/H)
. (2.6a, b)

2.2. Spectra

The magnitude of the temperature fluctuations is characterized by their variance, θ2.
One-dimensional wavenumber spectral density functions Wϑi(ki) can be defined as

ϑ2 =

∫ ∞
0

Wϑi(ki) dki, (2.7)

where kx is a wavenumber in the flow direction, x, and kz is a wavenumber in the
spanwise direction, z. Of particular interest is the influence of Prandtl number on
Wϑi(ki). Theoretical work on this problem has focused on three-dimensional spectra
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of scalar fluctuations in a homogeneous, isotropic field. Discussions are presented in
books by Hinze (1975) and by Tennekes & Lumley (1972). Even though the flow
considered in this paper is inhomogeneous, these theoretical results are considered
since they are useful in providing a physical interpretation of spectra that are obtained
with the DNS of channel flow.

Kolmogorov has suggested the existence, at large Reynolds numbers, of an equi-
librium condition for which the three-dimensional energy spectral density, W , is a
function of the dissipation of kinetic energy, ε, the kinematic viscosity, ν, and the
wavenumber, k. An inertial subrange is defined by the function

W = γε2/3k−5/3, (2.8)

where k = (k2
x + k2

y + k2
z )

1/2 is the magnitude of the three-dimensional wavenumber.

A Kolmogorov microscale is defined as η = (ν3/ε)1/4. The neglect of the influence of
viscosity in (2.8) becomes invalid when k is large compared to η−1.

Hinze (1975) and Tennekes & Lumley (1972) discuss an equilibrium condition at
large Reynolds numbers for which the three-dimensional spectral density for tempe-
rature fluctuations has the following functionality:

Wϑ = f(ε, εϑ, k, ν, α), (2.9a)

where εϑ is the dissipation of ϑ2/2. Obukhov (1949) and Corrsin (1951) suggest the
existence of an inertial subrange in which the influence of ν and α can be neglected,
so that

Wϑ = βεϑε
−1/3k−5/3. (2.9b)

A thermal microscale is defined as ηϑ = (α3/ε)1/4. It is seen that η = ηϑ for Pr = 1. The
use of (2.9b) at Pr < 1 requires that k is small compared to η−1

ϑ . Clay (1973) considered
measurements of velocity and temperature fluctuations in a mercury tunnel, a water
tunnel, the ocean, a heated air jet and the atmospheric boundary layer over the ocean
and suggested β ≈ 0.6.

The range of wavenumbers for which (2.9b) is valid is called the inertial–convective
subrange. An inertial–diffusive subrange can be defined for which Wϑ depends on α
but not on ν:

Wϑ = f(ε, εϑ, k, α). (2.10a)

This will exist in a range of wavenumbers for which η−1
ϑ < k < η−1. Batchelor et al.

(1959) consider this subrange by rewriting (2.10a) as

Wϑ = f(W, εϑ, k, α). (2.10b)

Since only Wϑ and εϑ include the dimension of temperature, equation (2.10b) can be
rewritten as

Wϑ = εϑf(W, k, α). (2.10c)

Batchelor et al. also assumed that, in this range of wavenumbers, Wϑ varies linearly
with W :

Wϑ = CεϑWα−3k−4, (2.10d)

where C is a dimensionless constant. If W is given by (2.8), equation (2.10d) predicts
that Wϑ ∼ k−17/3. This result has been verified in the studies of temperature spectra
in mercury by Clay (1973). It is consistent with other theories in that it predicts an
abrupt decrease in Wϑ at low Pr when k = O(η−1

ϑ ).
One-dimensional spectra are related to three-dimensional spectra by the following



DNS of turbulent transport at low Prandtl numbers 423

equation, presented in Hinze (1975, p. 285), for a homogeneous isotropic field:

Eϑi(ki) =

∫ ∞
ki

dk
Eϑ(k)

k
. (2.11)

Note that for ki → ∞ the one-dimensional spectrum will depend on contributions
from Eϑ(k) at large k. However, for ki → 0 the one-dimensional spectrum will depend
on contributions from Eϑ(k) both for small and large wavenumbers. For situations in
which Eϑ(k) is given by a power-law, equation (2.11) predicts that Eϑi (ki) will exhibit
the same functionality. Thus equation (2.9b) gives

Wϑi (ki) = 3
5
βεϑε

−1/3k
−5/3
i . (2.12)

3. Numerical procedures
Numerical solutions were obtained for the three-dimensional, time-dependent

Navier–Stokes equations in a skew-symmetric form and the advection–diffusion equa-
tion. Algorithms, developed by McLaughlin, that are described by Lyons, Hanratty &
McLaughlin (1991), were used. In presenting the results, x, y, z and u, v, w represent
coordinates and velocity components in the streamwise, the wall-normal and the
spanwise directions, respectively.

Results were presented by Lyons et al. (1991) for Pr = 1 and Reτ = 150. A
128× 65× 128 grid was used in a computational domain of λ+

x = 1900 and λ+
z = 950.

The results on the velocity field were substantiated with LDV measurements by
Niederschulte, Adrian & Hanratty (1990). Calculated temperature fields compared
favourably with laboratory measurements by Corcoran et al. (1952) and by Page et
al. (1952). Results from our laboratory for Pr = 1, 3, 10 were recently reported by
Na et al. (1999). These used a grid of 128 × 129 × 128 for Pr = 1 and 3 and of
128× 193× 128 for Pr = 10. Brooke (1994) used the code of Lyons et al. (1991) with
a 128× 65× 128 grid to calculate temperature fields for Pr = 0.05, 0.1, 0.3, 0.6. These
results appear in Papavassiliou & Hanratty (1997) and Kasagi & Iida (1999).

The present work uses a grid of 128 × 129 × 128. Some differences were noted
from the previous results of Brooke. To a small extent, these arose because of the
difference in the resolution in the y-direction. However, a more important factor is
that the calculations of Brooke had not converged sufficiently.

4. Results
4.1. Profiles of mean temperature

The calculations for which results are presented are summarized in table 1. It includes
a listing of the ratio of the ∆T defined using the centreline temperature, ∆T = Tw−0,
and the ∆T that is defined with the bulk average temperature in the bottom half of
the channel, ∆T = Tw − TB .

Calculated local time-mean temperatures, for Pr = 0.025, 0.05, 0.1, 0.3 and 1.0 are
presented in figure 1. The centre of the channel is defined as y = 0 and H is the
half-height. The temperature field is fully developed. If the flow were laminar the
profile would be a straight line and the heat flux would be qw = kTw/H . A Péclet
number is defined as Peτ = Huτ/α, where α is the molecular diffusivity of heat. This
Péclet number equals 3.75 for Pr = 0.025. The turbulent diffusivity is of the order
of 0.03Huτ in the central region of the channel for Pr = 0.025. Thus, the results for
Pr = 0.025 and Reτ = 150 correspond to a ratio of the molecular diffusivity to the
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Pr
Tw − Tc
Tw − TB y+

c NuB Nuc
v+ϑ+

y+3
× 106 αt

α
t,Pr=1.0

0.025 1.776 23.4 1.95 1.10 8.4 0.38
0.05 1.717 14.3 2.18 1.27 25.4 0.50
0.1 1.642 9.2 2.72 1.65 72.8 0.67
0.3 1.467 5.6 4.40 3.00 237.1 0.84
1.0 1.276 3.7 8.09 6.34 749.9 1.00

Table 1. Summary of the calculations.

–1.0 –0.5 0 0.5 1.0
–1.0

–0.5
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1.0

y /H

T
/(

T
w

 –
 T

c
)

Figure 1. Mean temperature profiles at different values of Pr , at Reτ = 150. —◦—, Pr = 1.0;
—×—, Pr = 0.3; — ·— , Pr = 0.1; – – –, Pr = 0.05; ——, Pr = 0.025.

turbulent diffusivity of about 9. Molecular diffusion dominates, so the temperature
profile approaches that for a laminar flow.

For Pr = 1, the Péclet number is 150. The turbulent diffusivity is of the order
0.08Huτ, so the ratio of the molecular diffusivity to the turbulent diffusivity for
Pr = 1, Reτ = 150 is about 0.08. Therefore, the slope of the temperature profile is
much smaller in the centre of the channel than is observed for Pr = 0.025. Close to the
wall the turbulent diffusivity decreases. Since the heat flux is a constant, independent
of y, the slope of the temperature profile increases in the near-wall region. Eventually,
a conductive sublayer region is reached very close to the wall where molecular
transport dominates. The slope of the profile is the largest here. The profiles show a
systematic change from these two asymptotic behaviours for 0.025 6 Pr 6 1.

Temperature profiles are plotted in semi-logarithmic coordinates in figure 2, where
the symbols indicate data obtained from DNS calculations. The temperature is made
dimensionless with T ∗ and the distance from the wall, yw , is scaled with ν/uτ. The
conductive sublayer is defined by the equation T̄+ = Pr y+. The location where
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Figure 2. Mean temperature profiles at different values of Pr , at Reτ = 150. The symbols indicate
DNS data. The solid curves are calculations that use a proposed model for αt. Steeper curves
correspond to progressively higher Prandtl numbers of 0.025, 0.05, 0.1, 0.3, 1.0.

the temperature profile deviates from this relation by 1% is used by us to define
the thickness of the sublayer, y+

c . Values of y+
c determined in this way are listed in

table 1. A logarithmic behaviour is not observed in any of the curves in figure 2,
because of the low Reτ used in the calculations. This is illustrated in figure 3 where
−y+(dT̄+/dy+) is plotted against y/H . An extended plateau region does not exist.

Values of the Nusselt number, defined as

Nuc =
qwH

(T̄w − T̄c)k , (4.1)

are plotted in figure 4 as plus signs and presented in table 1. A very good fitting of
the results for Nuc, in the range 3.75 6 Peτ 6 45, is

Nuc = 0.8905 + 0.0597Pe0.9361
τ , (4.2)

where Peτ = ReτPr . By expanding equation (2.4b) in a Taylor series, around Peτ = 0,
it is possible to show that the limiting behaviour of Nuc for Peτ → 0 can be represented
by

Nuc − 1 =
∂

∂Peτ

[∫ 0

−1

(
αt

uτH

)
d
( y
H

)]
Peτ=0

Pe2
τ . (4.3)

Thus, in the limit Peτ → 0

Nuc − 1 ∼= CPe2
τ (4.4)

so empirical equation (4.2) does not capture the correct behaviour for Peτ → 0. The
choice of C = 0.00685 allows both the value and the derivative of Nuc obtained from
equations (4.2) and (4.4) to be equal at Peτ = 3.75. Note that equations (4.2) and
(4.4) imply that the Nusselt number depends on Peτ. This hypothesis is sustained
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Figure 3. Profiles of −y+ dT̄+/dy+ at different Prandtl numbers, at Reτ = 150. �, Pr = 0.025;◦, Pr = 0.05; — ·—, Pr = 0.1; — —, Pr = 0.3; ——, Pr = 1.0.
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Figure 4. Nusselt number, equation (4.1), plotted as function of Peτ. DNS data at Reτ = 150
(+) are compared both with calculations performed by using the proposed model for αt (◦) and
with equations (4.2) and (4.4) (—–). Equations (4.2) and (4.4) match both in value and slope at
Peτ = 3.75.4, DNS data obtained at Reτ = 300, Pr = 0.05 and Pr = 1.0. The first case corresponds
to the same Péclet number obtained at Reτ = 150 for Pr = 0.1.

by the very good agreement between DNS data obtained at the same Peτ = 15, for
calculations with Reτ = 150 and 300, represented by plusses and triangles in figure 4.

Most empirical formulae reported in the literature use the Nusselt number defined
as

NuB =
qwDh

(Tw − TB)k
, (4.5)

with H replaced by the hydraulic diameter both in the Nusselt number, and in the
Péclet number, which is defined with bulk velocity rather than uτ and designated
by PeB in this paper. For channel flow, the hydraulic diameter equals four times
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Figure 5. Nusselt number, equation (4.5), plotted as function of PeB . DNS data at Reτ = 150 (◦)
are compared both with calculations performed by using our proposed model for αt (+) and with
equations (4.6) (——), (4.7) (– – –) and (4.8) (— ·—). The triangle represents a DNS that was carried
out at Reτ = 300 and Pr = 0.05.

the half-height, H . The bulk Reynolds number, evaluated using this length scale, is
approximately 9053 for the calculations at Reτ = 150. Note that NuB at PeB = 0 is a
function of the mean velocity field used to define the bulk temperature. For a uniform
mean velocity across the whole channel, NuB = 8.0 at PeB = 0. For the velocity field
used in this paper NuB = 7.24 at PeB = 0. Furthermore, in the limit of Pe → 0, the
bulk Nusselt number is not given by an equation of the same form as equation (4.4).

The solid curve in figure 5, given by the equation

NuB = 6.38 + 0.0153Pe0.834
B , (4.6)

fits the calculations for 0 6 Pr 6 0.3 and Reτ = 150. It does not give the correct
value of NuB at PeB = 0 (that is, 7.24). Results from a number of investigations for
heat transfer in tubular flows, discussed by Knudsen & Katz (1958), are similar to
equation (4.6): for example, Lyons et al. suggest that

NuB = 7.0 + 0.025Pe0.8
B (4.7)

and Seban & Shimazaki give

NuB = 5.0 + 0.025Pe0.8
B . (4.8)

These are plotted as the dashed and dot-dashed curves in figure 5, respectively. Rough
agreement between (4.6) and (4.7) is noted. This figure also presents calculations for
NuB performed with our proposed model for αt. A very good agreement with the
DNS data is observed. Moreover, a data point reported from a DNS we are currently
carrying out, at Reτ = 300 and Pr = 0.05 (given as a triangle), is close to the curve
represented by equation (4.6).

4.2. Reynolds transport and eddy diffusivity

Values of the dimensionless Reynolds transport, v+ϑ+, are plotted in figure 6. Strong
decreases are observed for decreasing Pr . Since the friction teperature is used to make
vϑ dimensionless the decrease is, to a large extent, due to the increase in T ∗ (or qw)
with decreasing Pr .
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Figure 6. Turbulent heat flux, scaled by the friction velocity and the friction temperature. Pro-
files are reported from DNS calculations at Reτ = 150, and at various Pr . ——, Pr = 0.025;
– – –, Pr = 0.05; — ·— ·—, Pr = 0.1; —�—, Pr = 0.3; —◦—, Pr = 1.0.
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Figure 7. Turbulent heat flux, scaled by the friction velocity and the temperature difference between
wall and centreline. Profiles are reported from DNS calculations at Reτ = 150, and at various Pr .
——, Pr = 0.025; – – –, Pr = 0.05; — ·— ·—, Pr = 0.1; —�—, Pr = 0.3; —◦—, Pr = 1.0.

This type of plot obscures the influence of Pr in the core region. Therefore, vϑ is
normalized with uτ and ∆T̄c = Tw in figure 7. An interesting behaviour is observed.
The non-dimensional vϑ in the core region is found to increase when Pr decreases
from 1 to 0.3. A monotonic decrease is observed at all y/H with a decrease in Pr from

0.1 to 0.025. Clearly Pr is affecting vϑ in two different ways. A possible explanation

for this is explored in the next section. The limiting values of v+ϑ+/y+3
for y+

w → 0
are summarized in table 1. These show a strong decrease with decreasing Pr . The
results for Pr = 1 appear to be qualitatively different from the results for lower Pr
in that

d

dy+
(v+ϑ+/y+3)

∣∣∣
w
> 0

and a maximum is observed at y+
w ≈ 4.
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Figure 8. Turbulent conductivities. The solid lines indicate data obtained from the DNS at
Reτ = 150; the dashed lines represent products of αt/u

∗H for Pr = 1 with the corresponding ratios
αt/(αt|Pr=1), given in figure 10. Turbulent conductivity increases monotonically with Pr over the
whole channel height, and is plotted for Pr = 0.025, 0.05, 0.1, 0.3, 1.0.
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Figure 9. Profiles of αt/αt,Pr=1.0
, at different values of the Prandtl number, evaluated from DNS at

Reτ = 150. —5—, Pr = 0.025; —◦—, Pr = 0.05; —×—, Pr = 0.1; – – –, Pr = 0.3; ——, Pr = 1.0.

Turbulent diffusivities, αt, were calculated from the DNS by using equation (2.3).
These are plotted as solid lines in figure 8. A monotonic decrease with decreasing
Prandtl numbers is observed at all y/H . The ratio of αt to the value obtained for
Pr = 1 is shown in figure 9. The edges of the conductive sublayer are indicated by
the vertical lines. An approximate representation of these curves, from the viewpoint
of making practical calculations, is to use the average values for locations outside
the conductive sublayer, 〈αt〉. These averaged results are summarized in table 1 and
plotted in figure 10 as the ratio of 〈αt〉 to the value of 〈αt〉 for Pr = 1. The curve in
this figure represents the equation

〈αt〉
〈αt〉Pr=1

= 1− exp(−CPenτ) (4.9)

with C = 0.232 and n = 0.574. The dashed curves in figure 8 are the calculated
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Figure 10. Ratio of averaged turbulent conductivities for Reτ = 150 at a given Prandtl number,
to the average at Pr = 1.0. 4, DNS data; ——, equation (4.9). The cross is for a calculation
at Reτ = 300, Pr = 0.05. Averaging has been applied only in the region outside the conductive
sublayer.
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Figure 11. Ratio of turbulent conductivity at a given Pr with the value for Pr = 1.0, at the same
Reτ. The solid line represents Reτ = 150 and the dots Reτ = 300. The Péclet number has the same
value (Peτ = 15) for both curves.

values of 〈αt〉 that are obtained by using the measurements at Pr = 1 and the ratios
〈αt〉/〈αt〉Pr=1. A rough fit is observed. The values of 〈αt〉/〈αt〉Pr=1 in table 1 were used
to calculate temperature profiles and values of Nuc. Excellent agreement with the
DNS is observed in figures 2 and 4, so the rough approximation of 〈αt〉 does not
translate into significant errors in making heat-transfer calculations.

The main results presented in figures 4, 5 and 10 were obtained at a single Reynolds
number, Reτ = 150, so the use of Peτ = ReτPr in these figures could be criticized
because it suggests a generality which was not explored. Some support for this type
of plot can be obtained because heat transfer data represented by (4.8) were obtained
over a range of Reynolds numbers.

Of more interest are DNS of heat transfer at Reτ = 300 that are currently under



DNS of turbulent transport at low Prandtl numbers 431

10–3 10–2 10–1 100
10–4

10–2

100

102

kzm /uô

(a)

10–3 10–2 10–1 100
10–4

10–2

100

102

(b)

10–2 10–1 100

10–8

102

kzm/uô

(c)

10–4

kz
+ –17/3

kz
+ –4.5

kz
+ –8.5

kzm /uô

Figure 12. Spanwise temperature and wall-normal velocity spectra at (a) y+ = 10, (b) y+ = 41 and
(c) y+ = 150. —◦—, v′-spectrum; ——, ϑ′-spectrum at Pr = 0.025; —�—, ϑ′-spectrum at Pr = 0.05;
—4—, ϑ′-spectrum at Pr = 0.1; – – –, ϑ′-spectrum at Pr = 0.3; —×—, ϑ′-spectrum at Pr = 1.0. Solid
lines in (c) indicate slopes that are discussed in the paper.

way. These have not fully converged so a detailed account of the results is not
justified. However, a discussion of the values of eddy diffusivity being calculated is
of interest. Values of αt/(αt|Pr=1) for Pr = 0.05 and Reτ = 300 (Peτ = 15) are plotted
as points in figure 11. The solid curve represents the calculations for Pr = 0.1 and
Reτ = 150 (Peτ = 15). Good agreement is noted. In fact the average values of the
ratio over the region y+ > 8 are 0.69 for Reτ = 150 and 0.66 for Reτ = 300 (plotted as
a cross in figure 10). Values of Nuc and NuB obtained with this DNS at Reτ = 300 are
presented in figures 4 and 5. These also show good agreement with results obtained
for Reτ = 150.

4.3. Spectra

Spanwise one-dimensional spectra of the temperature fluctuations are presented in
figures 12(a) to 12(c) for different distances from the wall. The ordinate is Wϑzuτ/ϑ

2ν,
so the areas under the curves equal unity. For comparison the non-dimensional
spectral density function for v2 is also given. A striking feature in all of these spectra
is the sharp drop in Wϑz at large kz from what is observed at Pr = 1. Decreases
of the effectiveness of high-wavenumber velocity fluctuations in creating temperature
fluctuations are clearly seen for decreasing Pr . Table 2 lists median wavenumbers,
along with η+

ϑ , ε+ϑ , ε+ and η+.

The one-dimensional spectral density functions for v2 show definite maxima at
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Pr η+
ϑ η+ ε+ϑ × 104 ε+ × 104 k+

z m for W+
vv k+

z m for W+
ϑϑ

ϑ2uτ

εϑH
y+

0.025 27.3 1.7 9.8 1158.0 0.094 0.017 0.361 10
34.2 2.2 18.0 466.9 0.052 0.014 0.655 41
43.7 2.7 22.6 175.5 0.035 0.010 0.967 76
58.1 3.7 22.5 56.1 0.019 0.007 1.540 150

0.05 16.2 1.7 38.7 1158.0 0.094 0.022 0.154 10
20.4 2.2 73.8 466.9 0.052 0.017 0.435 41
26.0 2.7 88.7 175.5 0.035 0.012 0.652 76
34.6 3.7 86.8 56.1 0.019 0.009 0.999 150

0.1 9.6 1.7 120.4 1158.0 0.094 0.030 0.056 10
12.1 2.2 214.9 466.9 0.052 0.022 0.251 41
15.4 2.7 235.7 175.5 0.035 0.014 0.405 76
20.5 3.7 236.9 56.1 0.019 0.010 0.627 150

0.3 4.2 1.7 467.5 1158.0 0.094 0.037 0.029 10
5.3 2.2 559.6 466.9 0.052 0.025 0.172 41
6.8 2.7 480.4 175.5 0.035 0.018 0.294 76
9.0 3.7 486.3 56.1 0.019 0.012 0.487 150

1.0 1.7 1.7 1531.5 1158.0 0.094 0.046 0.015 10
2.2 2.2 907.0 466.9 0.052 0.032 0.112 41
2.7 2.7 608.4 175.5 0.035 0.022 0.201 76
3.7 3.7 545.0 56.1 0.019 0.013 0.315 150

Table 2. Parameters characterizing the spectral density function of temperature fluctuations.

k+
z > 0 for y+

w = 10 and 41 and a very weak maximum for y+
w = 76 (not shown

here). This results because of the influence of streamwise vortices, which increase in
size with the distance from the wall. Measurements of Wϑz for Pr = 1 show a less
pronounced maximum. Maxima are not observed at very small Pr , indicating that
thermal conductivity is diminishing the importance of the wall vortices.

Since the spectrum for v2 at y+
w = 150 is approximately the same as Wϑz for

Pr = 1, the role of molecular diffusivity in damping large-wavenumber temperature
fluctuations is more clearly seen at this location. A line with a slope of k+

z
−17/3

is
shown in figure 12(c). This corresponds to the prediction by Batchelor et al. (1959)
in the limit of large kηϑ for the inertial–diffusive subrange of homogeneous, isotropic

turbulence. The drop-off of the Wϑz (kz) spectrum at large k+
z is sharper than k+

z
−17/3

.
This behaviour can be explained because the Reynolds number is too small to have
an extended range of kz where Wvz ≈ k

−5/3
z . A more realistic approach is to use

equation (2.10d) with W obtained from the DNS calculations. Figures 13(a) and
13(b) show plots of Wϑzα

3k4
z /Wvz εϑ. The results for Pr = 0.025, 0.05 and 0.1 show a

plateau at the highest resolved wavenumbers. The lines in figure 13 indicate a value
of kzηϑ = 3.0. This roughly defines the wavenumber at which a limiting behaviour,
defined by equation (2.10d), commences. As indicated in figure 12(c), Wvz (kz) varies
as k−4.5

z at large wavenumbers. Thus, in accordance with equation (2.10d), Wϑz (kz)
should vary as k−8.5

z , as shown in figure 12(c).
Similar results are obtained for streamwise spectra Wϑx(kx). Figure 14 shows a plot

of Wϑx(kx)uτ/ϑ
2v obtained at y+ = 150. A damping of high-wavenumber fluctuations

is noted at large kx. Figure 15 plots Wϑxα
3k4
x/Wvxεϑ versus kxηϑ. A plateau at large kx
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Figure 13. Spanwise temperature spectra at (a) y+
w = 41, (b) y+

w = 150. The scaling is consistent
with equation (2.10d). The vertical line corresponds to kzηϑ = 3.0. ——, ϑ′-spectrum at Pr = 0.025;
—�—, ϑ′-spectrum at Pr = 0.05; —×—, ϑ′-spectrum at Pr = 0.1; —◦—, ϑ′-spectrum at Pr = 0.3; —4—,
ϑ′-spectrum at Pr = 1.0.
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Figure 14. Streamwise temperature spectra at y+
w = 150. Solid lines indicate slopes discussed in the

paper. – – –, v′-velocity spectrum; ——, ϑ′-spectrum at Pr = 0.025; —×—, ϑ′-spectrum at Pr = 0.05;
—4—, ϑ′-spectrum at Pr = 0.1; —�—, ϑ′-spectrum at Pr = 0.3; —◦—, ϑ′-spectrum at Pr = 1.0.

begins at kxηϑ approximately equal to 3.0. The slope of the Wvx(kx) spectrum at large
k+
x has a smaller negative value (k+

x
−3.5

) than is observed for Wvz (kz). This accounts

for the closer agreement with a k
−17/3
x asymptote, observed in figure 14.

4.4. Mean-square fluctuations and correlation coefficients

Figure 16 shows calculated values of the root-mean-square of temperature fluctuations.
As was done in figure 7, for the term representing Reynolds transport, ϑ2 is made

dimensionless with Tw − Tc. The change in the ϑ′ = ϑ2
1/2

profile with changes of Pr
from 1 to 0.3 can be understood by using mixing-length arguments whereby ϑ′ should
scale with the product of the mixing length and the gradient in the mean temperature.
The increase in ϑ′ in the centre regions of the channel, therefore, can be ascribed to
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Figure 15. Streamwise temperature spectra at y+
w = 150. The scaling is consistent with equation

(2.10d). The vertical line correspond to kxηϑ = 3.0. Temperature streamwise wavenumber spectra
at y+

w = 150. Solid lines indicate slopes discussed in the paper. ——, ϑ′-spectrum at Pr = 0.025;
—4—, ϑ′-spectrum at Pr = 0.05; —�—, ϑ′-spectrum at Pr = 0.1; —◦—, ϑ′-spectrum at Pr = 0.3;
—×—, ϑ′-spectrum at Pr = 1.0.
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Figure 16. Standard deviations of temperature fluctuations scaled by the temperature difference
between wall and centreline. —×—, Pr = 1.0; —4—, Pr = 0.3; —5—, Pr = 0.1; —�—, Pr = 0.05;
—�—, Pr = 0.025.

an increase in dT/dy. The decrease in ϑ′ close to the wall results from the decrease
in dT/dy.

An understanding of the monotonic decrease of ϑ′ from Pr = 0.3 to Pr = 0.025
can be obtained from the results on spectra. These show that, with decreasing Pr (or
increasing thermal conductivity), the temperature field loses its ability to respond to
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Figure 17. Correlation coefficient between wall-normal velocity component and temperature
fluctuations. —×—, Pr = 1.0; —4—, Pr = 0.3; —5—, Pr = 0.1; —�—, Pr = 0.05; —�—, Pr = 0.025.

large-wavenumber velocity fluctuations. As a result, there is a decrease in ϑ′ because,
effectively, the temperature field sees a turbulent velocity field with smaller intensities.
This interpretation of figure 16 is consistent with the results on vϑ in figure 7. These
show an increase in vϑ/uτ∆Tc from Pr = 1 to Pr = 0.3 and a decrease from Pr = 0.1
to Pr = 0.025.

Values of the correlation coefficient Rvϑ = vϑ/v′ϑ′ are presented in figure 17.
These show a small range of values (0.4 to 0.6) outside the conductive sublayer. An
understanding of the influence of Pr on the results in figure 17 can be obtained by
recognizing that the damping of high-wavenumber contributions to Wϑi(ki) means
that the temperature fluctuations are associated with lower-wavenumber velocity
fluctuations. This appears to increase the correlation between the temperature and
the velocity fluctuations, leading to an increase in Rvϑ. However the damping can also
mean that the temperature field effectively sees only that part of the velocity field
that is characterized by low wavenumbers. This would lead to smaller Rvϑ.

In order to investigate further the behaviour of Rvϑ, we performed a quadrant
analysis for the turbulent heat flux. First- and third-quadrant events contribute
positively to the turublent heat flux, while second- and fourth-quadrant events make
negative contributions. Figure 18 shows probabilities of events in each quadrant,
averaged over −0.12 6 y/H 6 0.12. It is noted that, as Pr increases, the probability
of positive contributions to the turbulent heat flux decreases, while the probability of
negative contributions increases. This is consistent with the observed decrease of Rvϑ
with increasing Pr .

Correlation coefficients Ruϑ are presented in figure 19. Kim & Moin (1989) showed
that flow-oriented vortices control both the u and ϑ fluctuations close to the wall for
Pr = 1. As has already been noted in the previous subsection these wall vortices play
a less important role at small Pr . This accounts for the decrease in Ruϑ for decreasing
Pr .

As discussed in § 2.2, a decrease in the effectiveness of large-wavenumber con-
tributions of velocity fluctuations to three-dimensional spectra of the temperature
fluctuations can be expected at small Pr . The spectral density function includes the
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Figure 18. Probabilities of v′ϑ′ quadrant events, averaged over a region extending from y/H = −0.12
to y/H = 0.12 across the centreline. �, v′ > 0, ϑ′ > 0; �, v′ < 0, ϑ′ > 0; O, v′ < 0, ϑ′ < 0; ?, v′ > 0,
ϑ′ < 0.
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Figure 19. Correlation coefficient between streamwise velocity component and temperature
fluctuations. —×—, Pr = 1.0; —4—, Pr = 0.3; —5—, Pr = 0.1; —�—, Pr = 0.05; —�—, Pr = 0.025.

concept of temperature. The use of a friction temperature to make it dimensionless
produces very large decreases with decreasing Pr , because of the increase of qw . Fig-
ure 12 avoids this difficulty by using ϑ2 as a scaling function. This more clearly shows
the effect of Pr and also allows a comparison with velocity spectra, such as shown in
figure 12. However, since the areas under these curves equal unity, the spectrá density
functions show a decrease with decreasing Pr at large ki and an increase at small ki.
The use of εϑ as a scaling function could be a better choice to show the influence of
Pr . Since εϑ is approximately equal to production, Pϑ = vϑdT̄ /dy, except for locations
very close to the wall, it reflects the effects of local changes of dT̄ /dy with Pr . This
is illustrated in the plots of Wϑz (kz) at y+ = 150 for different Pr in figure 20. The
areas under these curves, reported in table 2, are equal to ϑ2uτ/εϑH , rather than unity.
Figure 20 clearly shows the effect of damping of high-wavenumber fluctuations on
the one-dimensional spectral function Wϑz (kz). We see a decrease in Wϑz (kz) at all kz
and a sharp drop-off at large kz . The values of εϑν/u

2
τT

2
w used in developing figure 20

are shown in figure 21.
The damping of large-wavenumber temperature fluctuations is illustrated in the
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Figure 20. Spanwise spectrum for temperature fluctuations at y+ = 150, scaled by the dissipation
of temperature fluctuations. —◦—, Pr = 1.0; —×—, Pr = 0.3; —4—, Pr = 0.1; —�—, Pr = 0.05;
——, Pr = 0.025.
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Figure 21. Dissipation of ϑ2/2, scaled as εϑν/u
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2
w . —×—, Pr = 1.0; —5—, Pr = 0.3; —�—, Pr = 0.1;

—◦—, Pr = 0.05; ——, Pr = 0.025.

plots of temperature contours in the (y, z)-plane, given in figure 22(b, d ). These clearly
show an increase in the size of the structures in the temperature field and a smoothing
of contours of constant temperature with decreasing Pr . For comparison, figure 22(a)
gives contours of the streamwise velocity fluctuations calculated at the same (y, z)-
plane and at the same time for which figure 22(b, c) were calculated. It is interesting
to note that, in accordance with the strong reduction in Ruϑ with decreasing Pr ,
there is no similarity between u′ and ϑ′ contours, at Pr = 0.025 and 0.1. At Pr = 1,
however, a similarity is noted in the near-wall region. In the core region, no similarity
can be expected even at Pr = 1, since the different boundary conditions imposed on
u′ and ϑ′ cause the production of u′ to vanish and the production of ϑ′ to reach a
local maximum at the centreline. These differences are manifested in the more intense
fluctuations in figure 22(d ), when compared with figure 22(a).

The theory of Batchelor et al. (1959) helps in interpreting these results. The calcu-
lations from the DNS agree with their suggestions that a drop-off at kz ≈ η−1

ϑ occurs
and that equation (2.10d) describes the limiting behaviour at large kz .
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Figure 22. Temperature and velocity fluctuations on a cross-flow plane. Solid lines indicate positive
fluctuations, while dashed lines indicate negative fluctuations. Fields in (a)–(c) are evaluated at
the same time and location: (a) streamwise velocity; (b) temperature, Pr = 0.025; (c) temperature,
Pr = 0.1; (d ) temperature, Pr = 1.0.
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5. Discussion

As the molecular thermal diffusivity increases, the effectiveness of high-wavenumber
velocity fluctuations in creating scalar turbulence decreases. Thermal diffusivity acts
as a filter that, effectively, decreases the magnitude and increases the length scale of
the velocity fluctuations ‘seen’ by the scalar field. A principal contribution of this
paper is the demonstration of this filtering and the provision of an interpretation
which uses results obtained for homogeneous isotropic turbulence. In particular, the
thermal microscale, ηϑ, is used to define the influence of Prandtl on the ‘cut-off’
wavenumber. The comparison is not meant to provide a confirmation of theories in
the literature, because the flow is non-homogeneous and the Reynolds number is too
low for an inertial subrange in the velocity spectrum to exist.

A number of researchers (Reynolds 1975) have interpreted the decrease of turbulent
diffusivity with decreasing Prandtl number as resulting from a decrease of the mixing
length because of a leakage of the transported quantity from eddies by molecular
diffusion. The present paper offers an alternative interpretation which looks upon
the turbulent diffusivity as being proportional to the product of a time scale and the
variance of the velocity fluctuations responsible for transporting heat. The decrease
in turbulent diffusivity because of increasing molecular diffusion can, therefore, be
interpreted as being a consequence of a filtering action which causes a decrease in the
magnitude of the velocity fluctuations responsible for transporting heat. Furthermore,
there is also a decrease in the Lagrangian time scale because molecular diffusivity
causes thermal markers to escape from transporting eddies.

Figure 7 shows an increase in vϑ with a decrease from Pr = 1 to Pr = 0.1. If one
uses mixing-length arguments ϑ′ can be presumed to increase with l dT̄ /dy. In the
central region of the channel cross-section, dT̄ /dy increases when Pr decreases from

1 to 0.3. This would, therefore, tend to cause an increase in vϑ. However, close to the
wall dT̄ /dy decreases with a change of Pr from 1 to 0.3. Consequently, a decrease

in vϑ should be expected in this region. Changes in vϑ with a decrease of Pr from
0.1 to 0.025 appear to be associated, mainly, with the filtering effect of molecular
thermal diffusivity. The decrease in vϑ, observed at all y+, is caused by a decrease in
the effectiveness of velocity fluctuations, in generating temperature fluctuations, with
decreasing Pr , as shown in figure 22.

The influence of dT̄ /dy on vϑ can be taken, partially, into account by defining tur-
bulent diffusivities. These are found to decrease monotonically with decreasing Pr at
all locations in the channel. These results are consistent with studies of diffusion from
a point source in isotropic turbulence by Saffman (1960, 1963) and by Kontomaris &
Hanratty (1993) and with studies by Kontomaris & Hanratty (1994) of point source
diffusion in a DNS of channel flow.

The finding that 〈αt〉/〈αt〉Pr=1 does not show large variations with y+ outside the
conductive sublayer suggests a good way to approximate the average temperature
field. This has been tested by calculating the temperature fields by using αt obtained
from a relation that provides 〈αt〉/〈αt〉Pr=1 as a function of Peτ. See figures 2, 4, 9.

The usual practice in calculating turbulent temperature fields at different Prandtl
numbers is to develop a model for the turbulent viscosity and to define a turbulent
Prandtl number which can depend on spatial location and on the molecular Prandtl
number. The results shown in figures 9, 10, 11 suggest that it might be advantageous
to calculate the effect of Pr on the temperature field by using a model for the
turbulent diffusivity of heat for Pr = 1 rather than the turbulent viscosity. This is
done in figure 4 for Reτ = 150 and for Reτ = 300.
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The large changes of αt, observed for small Pr , occur in situations in which
molecular transport is dominating turbulent transport. Consequently, the decreases
in the turbulent diffusivity do not have a strong effect on the mean temperature field.
Even by assuming αt = αtPr=1, the maximum relative error in the calculation of the
Nusselt number for Pr = 0.05 via equation (2.4b) is not larger that 17%.

6. Conclusions
The principal results of this study are contained in figures 8, 9, 12, 20 and 22. The

first of these shows a monotonic decrease in αt with decreasing Pr at all y+. The
second shows only small variations of 〈αt〉/〈αt〉Pr=1 over all locations in the channel
that are outside the conductive sublayer. The last three show sharp decreases in Wϑ

beyond kz , kx ≈ 3.0η−1
ϑ , where ηϑ increases with decreasing Pr . Molecular diffusivity

acts as a filter by decreasing the effectiveness of large-frequency velocity fluctuations
in creating temperature fluctuations. This, in turn, causes the observed decrease in αt.
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